Part Number Hot Search : 
6S3953 K2655 B3701 MBRS1 NTE1027 DS17285 RCA9202C IRF6645
Product Description
Full Text Search
 

To Download M61323FP Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MITSUBISHI ICs
M61323SP/FP
WIDE FREQUENCY BAND ANALOG SWITCH
DESCRIPTION
The M61323SP/FP is a semiconductor integrated circuit for the RGBHV interface. The device features switching signals input from two types of image sources and outputting the signals to the CRT display,etc. Synchronous signals, meeting a frequency band of 10KHz to 200KHz, are output at TTL. The frequency band of video signals is 250MHz, acquiring high-resolution images, and are optimum as an interface IC with high-resolution CRT display and various new media. The M61323SP/FP keeps the power saving mode, and it can reduce ICC about 10mA under the condition that all Vcc are supplied.
PIN CONFIGURATION(TOP VIEW)
Vcc1 (R) Input1 (R) Vcc1 (G) Input1 (G) Vcc1 (B) Input1 (B) Input1 (H) Input1 (V) GND1 Input2 (R) PowerSave SW Input2(G) Input SW Input2 (B) Input2 (H) Input2 (V)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
FEATURES
Frequency band : RGB........................................250MHz : H,V...........................10KHz to 200KHz Input level:RGB............................................0.7Vp-p(Typ.) H,V TTL input ....................3 to 5Vo-p (bipolar) Only the G channel is provided with Sync-on video output. The TTL format is adopted for HV output.
32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17
VCC2 (R) OUTPUT (R) GND2(R) Vcc2(G) OUTPUT(G) GND2 (G) Vcc2 (B) OUTPUT(B) GND2(B) G Buffer out Sync SEP in Sync SEP out Vcc3 OUTPUT(H) OUTPUT(V) GND3
APPLICATION
Display monitor OUTLINE:32P4B
RECOMMENDED OPERATING CONDITION
Supply voltage range...................................4.75 to 5.25V Rated voltage range..................................................5.0V
PIN CONFIGURATION(TOP VIEW)
Vcc1 (R) Input1 (R) Vcc1 (G) Input1 (G) Vcc1 (B) Input1 (B) Input1 (H) Input1 (V) GND1 GND1 Input2 (R) PowerSave SW Input2(G) Input SW Input2 (B) Input2 (H) Input2 (V) NC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 NC VCC2 (R) OUTPUT (R) GND2(R) Vcc2(G) OUTPUT(G) GND2 (G) Vcc2 (B) OUTPUT(B) GND2(B) G Buffer out Sync SEP in Sync SEP out Vcc3 Vcc3 OUTPUT(H) OUTPUT(V) GND3
OUTLINE:36P2R
MITSUBISHI
1
15
MITSUBISHI ICs
M61323SP/FP
WIDE FREQUENCY BAND ANALOG SWITCH BLOCK DIAGRAM ( M61323SP )
VCC(R)
GND
OUTPUT(G) VCC(G)
VCC(B) OUTPUT(B)
GND
Sync-Sep.INPUT OUTPUT (G-Buffer)
VCC
OUTPUT(V) OUTPUT(H) GND
OUTPUT(R)
GND
Sync-Sep.OUT
32
Vcc(R)
31
30
29
Vcc(G)
28
27
26
Vcc(B)
25
24
23
22
21
20
Vcc
19
18
17
R
G
B
G
Sync-Sep.
H
V
Vcc(R)
Vcc(G)
Vcc(B)
GND
POWER SAVE SW
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
INPUT1(R) Vcc(R)
INPUT1(G)
INPUT1(B)
INPUT1(V) GND
INPUT2(R)
INPUT2(G)
INPUT2(B)
INPUT2(V)
Vcc(G)
Vcc(B)
INPUT1(H)
POWER SAVE SW
INPUT SW
INPUT2(H)
BLOCK DIAGRAM ( M61323FP )
VCC(R)
GND
OUTPUT(G) VCC(G)
VCC(B) OUTPUT(B)
GND
Sync-Sep.INPUT OUTPUT (G-Buffer)
VCC
VCC
OUTPUT(V) GND
OUTPUT(R)
GND
Sync-Sep.OUT
OUTPUT(H)
36
NC
35
Vcc(R)
34
33
32
Vcc(G)
31
30
29
Vcc(B)
28
27
26
25
24
23
Vcc
22
Vcc
21
20
19
R
G
B
G
Sync-Sep.
H
V
Vcc(R)
Vcc(G)
Vcc(B)
GND
GND
POWER SAVE SW
NC
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
INPUT1(R) Vcc(R)
INPUT1(G)
INPUT1(B)
INPUT1(V) GND GND
INPUT2(R)
INPUT2(G)
INPUT2(B)
INPUT2(V)
Vcc(G)
Vcc(B)
INPUT1(H)
POWER SAVE SW
INPUT SW
INPUT2(H)
MITSUBISHI
2
15
MITSUBISHI ICs
M61323SP/FP
WIDE FREQUENCY BAND ANALOG SWITCH
ABSOLUTE MAXIMUM RATINGS ( Ambient temperature: 25 C )
Parameter Supply voltage Power dissipation Operating temperature Storage temperature Electrostatic discharge Recommended supply voltage Recommended supply voltage range Symbol Vcc Pd Topr Tstg Surge Vopr Vopr' Rating 7.0 1603 (SP) , 1068 (FP) -20 to +85 (SP) , -20 to +75 (FP) -40 to +150 +200 5.0 4.75 to 5.25 Unit V mW C C V V V
ELECTRICAL CHARACTERISTICS ( M61323SP VCC=5.0V Ta = 25 C)
Test conditions Symbol Parameter Test point (S) Input
SW2 Rin1 SW4 Gin1 SW6 Bin1 SW7 Hin1
SW Min.
Limits Typ. 70 Max. Unit mA
SW8 SW10 SW12 SW14 SW15 SW16 SW22 SW11 SW13 Vin1 Rin2 Gin2 Bin2 Hin2 Vin2 Sync P.sav Switch
Icc
Circuit current 1
b
b
b
b
b
b
b
b
b
b
b
a 3V b
b
IccSTBY Circuit current 2
b
b
b
b
b
b
b
b
b
b
b
b
10
mA
( RGB SW )
Vdc1 Output DC voltage 1 31 28 25 31 28 25 23 b b b b b b b b b b b a 3V a 3V a 3V a 3V a 3V a 3V a 3V b a 3V b a 3V b a 3V b -0.1 1.5 V
Vdc2
Output DC voltage 2
b
b
b
b
b
b
b
b
b
b
b
1.5
V
Vdc3
Output DC voltage 3
b b
b b
b b
b b
b b
b b
b b
b b
b b
b b
b b
0.9
V
Vdc4
Output DC voltage 4 Maximum allowable input level 1 Maximum allowable input level 2 Voltage gain 1 Relative voltage gain 1 Voltage gain 2 Relative voltage gain 2 Voltage gain 3
23 31 28 25 31 28 25 31 28 25
0.9
V
VIMAX1
abb bab bba SG1 SG1 SG1 b b b
b
b
b
b
b
b
b
b
1.8
Vp-p
VIMAX2
b
b
abb bab bba SG1 SG1 SG1 b b b
b
b
b
1.8
Vp-p
GV1 GV1
abb bab bba SG2 SG2 SG2
b
b
b
b
b
0.7
1.3
dB
Relative to measured values above 31 28 25 abb bab bba SG2 SG2 SG2 a 3V a 3V
-0.4
0
0.4
dB
GV2 GV2
b
b
b
b
b
b
b
b
-0.1
0.7
1.3
dB
Relative to measured values above a SG2 b a 3V a 3V
-0.4 b b b b
0
0.4
dB
GV3
23
b
b
b
b
b
b a SG2
b
-0.6
0
0.6
dB
GV4
Voltage gain 4
23
b
b
b
b
b
b
b
b
b
a 3V
-0.6
0
0.6
dB
MITSUBISHI
3
15
MITSUBISHI ICs
M61323SP/FP
WIDE FREQUENCY BAND ANALOG SWITCH
ELECTRICAL CHARACTERISTICS (cont.)
Test conditions Symbol Parameter Freq.characteristic1 (100MHz) Relative Freq.characteristic1 (100MHz) Freq.characteristic2 (100MHz) Relative Freq.characteristic2 (100MHz) Freq.characteristic3 (250MHz) Freq.characteristic4 (250MHz) Crosstalk between two inputs1 (10MHz) Crosstalk between two inputs2 (10MHz) Crosstalk between two inputs3 (100MHz) Crosstalk between two inputs4 (100MHz) Crosstalk between channels1 (10MHz) Crosstalk between channels2 (10MHz) Crosstalk between channels3 (100MHz) Crosstalk between channels4 (100MHz) 31 28 25 31 28 25 31 28 25 31 28 25 31 28 25 31 28 25 31 28 25 31 28 25 31 28 25 31 28 25 31 28 25 31 28 25 31 28 25 31 28 25 31 28 25 b Test point (S) 31 28 25 Input
SW2 Rin1 SW4 Gin1 SW6 Bin1 SW7 Hin1
SW Min. -1
Limits Typ. 0 Max. Unit 1 dB
SW8 SW10 SW12 SW14 SW15 SW16 SW22 SW11 SW13 Vin1 Rin2 Gin2 Bin2 Hin2 Vin2 Sync P.sav Switch
Fc1 Fc1
abb bab bba SG4 SG4 SG4 b
b
b
b
b
b
b
b
a 3V
b
Relative to measured values above abb bab bba SG4 SG4 SG4 a 3V a 3V
-1
0
1
dB
Fc2 Fc2
b
b
b
b
b
b
b
-1
0
1
dB
Relative to measured values above abb bab bba SG5 SG5 SG5 b b b b b a 3V a 3V a 3V a 3V a 3V a 3V a 3V a 3V a 3V a 3V a 3V a 3V a 3V a 3V
-1
0
1
dB
Fc3
b
b
b
b
b
b
b
b a 3V a 3V b a 3V b
-3
dB
Fc4
b
abb bab bba SG5 SG5 SG5 b b b
b
b
b
-3
dB
CTI1
abb bab bba SG3 SG3 SG3 b b b b b
b
b
b
b
-60
-45
dB
CTI2
b
abb bab bba SG3 SG3 SG3 b b b
b
b
b
-60
-45
dB
CTI3
abb bab bba SG4 SG4 SG4 b b b b b
b
b
b
b
-40
-30
dB
CTI4
b
abb bab bba SG4 SG4 SG4 b b b
b
b
b
-40
-30
dB
CTC1
abb bab bba SG3 SG3 SG3 b b b b b
b
b
b
b
b a 3V b a 3V b
-50
-40
dB
CTC2
b
abb bab bba SG3 SG3 SG3 b b b
b
b
b
-50
-40
dB
CTC3
abb bab bba SG4 SG4 SG4 b b b b b
b
b
b
b
-30
-25
dB
CTC4
b
abb bab bba SG4 SG4 SG4 b b b
b
b
b
-30
-25
dB
Tr1 Pulse characteristic1 Tf1
abb bab bba SG6 SG6 SG6 b abb bab bba SG6 SG6 SG6 b b b b b
b
b
b
b
1.6
2.5
nsec
b
b
b
b
b
b
b
b a 3V a 3V
1.6
2.5
nsec
Tr2 Pulse characteristic2 Tf2
b
abb bab bba SG6 SG6 SG6 abb bab bba SG6 SG6 SG6
b
b
b
1.6
2.5
nsec
b
b
b
b
b
b
b
b
1.6
2.5
nsec
MITSUBISHI
4
15
MITSUBISHI ICs
M61323SP/FP
WIDE FREQUENCY BAND ANALOG SWITCH
ELECTRICAL CHARACTERISTICS (cont.)
Test conditions Symbol Parameter Test point (S) Input
SW2 Rin1 SW4 Gin1 SW6 Bin1 SW7 Hin1
SW Min.
Limits Typ. Max. Unit
SW8 SW10 SW12 SW14 SW15 SW16 SW22 SW11 SW13 Vin1 Rin2 Gin2 Bin2 Hin2 Vin2 Sync P.sav Switch
( HV SW )
Vdch1 Vdch2 Vdcl1 Vdcl2 VithH VithL Tr3 Tf3 HVdr HVDf High level output voltage 1 High level output voltage 2 Low level output voltage 1 Low level output voltage 2 Input threshold voltage H Input threshold voltage L Rising time 3 Falling time 3 Rising delay time Falling delay time 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b a a SG8 SG8 b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b a 3V a 3V a 3V a 3V a 3V a 3V a 3V a 3V a 3V a 3V b a 3V b a 3V b b b b b b 1.8 1.0 3.8 3.8 4.2 4.2 0.2 0.2 2.0 1.4 25 15 40 40 60 60 0.5 0.5 2.2 1.6 V V V V V V nsec nsec nsec nsec
a a SG8 SG8 b b
a a SG8 SG8 b b
a a SG8 SG8 b b b b b b b b b b b b
a a SG8 SG8 a a SG8 SG8 a a SG8 SG8 a a SG8 SG8 a a SG8 SG8 a a SG8 SG8
( SYNC SEP. )
SYrv SYVH SYVL STr STf SDr SDf Sync on G input minimum voltage Sync output high level voltage Sync output low level voltage Sync output rising time 3 Sync output falling time 3 Sync output rising delay time Sync output falling delay time 21 21 21 21 21 21 21 b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b a a SG7 3V a a SG7 3V a a SG7 3V a a SG7 3V a a SG7 3V a a SG7 3V a a SG7 3V 0.2 3.8 4.3 0.2 25 15 40 40 60 60 0.5 Vp-p V V nsec nsec nsec nsec
( CHANNEL SELECT SW , POWER SAVE SW )
Vthch1 Vthch2 VthPH VthPL Channel select SW threshold voltage 1 Channel select SW threshold voltage 2 Power save SW threshold voltage 1 Power save SW threshold voltage 2 a a a a a SG6 SG6 SG6 SG8 SG8 a a a a a SG6 SG6 SG6 SG8 SG8 a a a a a SG6 SG6 SG6 SG8 SG8 a a a a a SG6 SG6 SG6 SG8 SG8 b b b b b b b b b b b b b b b b b b b b a a SG7 3V a a SG7 3V a SG7 a SG7 a
variable
a
variable
2.5 1.0 2.0 1.0
V V V V
a
variable
b b
a
variable
MITSUBISHI
5
15
MITSUBISHI ICs
M61323SP/FP
WIDE FREQUENCY BAND ANALOG SWITCH
ELECTRICAL CHARACTERISTICS TEST METHOD ( M61323SP )
Circuit current 1 No signal. Measure the total circuit current as Icc when supplying 3VDC to Pin11. Circuit current 2 No signal. Measure the total circuit current as IccSTBY when Pin11 connected to GND. Output DC voltage 1,2 Set SW13 to GND (or OPEN), measure the DC voltage of TP31(TP28,TP25) when there is no signal input. The DC voltage is as vdc1(vdc2). Output DC voltage 3,4 Measure the DC voltage TP23 same as "Output DC voltage 1,2". The DC voltage is Vdc3(Vdc4). Maximum allowable input level 1,2 Set SW13 to GND, input SG1 to Pin2 only. Gradually increasing the SG1 amplitude, read the amplitude of the input signal when the output waveform of TP31 is strained. The value is as Vimax1. In the same way, measure Vimax1 in response to inputs in Pin4 and Pin6 only. Then set SW13 to OPEN, measure Vimax2 in response to inputs in Pin10,12 and 14 only. Voltage gain 1,2 1. The conditions is as table. 2. Set SW13 to GND, input SG2(0.7Vp-p) to Pin2 only. Read the output amplitude of TP31. The value is as VOR1. 3. Voltage gain GV1 is VOR1 [Vp-p] GV1= 20 LOG 0.7 (dB) 4. In the same way, calculate GV1in response to inputs in Pin4 and Pin6 only. 5. Then set SW13 to OPEN, measure GV2 in response to inputs in Pin10,12 and 14 only. Relative voltage gain 1,2 1. Calculate relative voltage gain GV1 by the following formula. GV1=GV1R-GV1G, GV1G-GV1B, GV1B-GV1R 2. In the same way, calculate GV2. Voltage gain 3,4 1. The conditions is as table. 2. Read the output amplitude of TP23. 3. Calculate GV3, GV14 same as "Voltage gain 1". Freq.characteristic 1,2 / Relative freq.characteristic 1,2 1. The conditions is as table. This measurement shall use active probe. 2. Set SW13 to GND, input SG4(0.7Vp-p) to Pin2 only. Measure TP31 output amplitude as VOR1. In the same way,input SG2(0.7Vp-p) to Pin2 only. Measure TP31 output amplitude as VOR2. 3. Freq.characteristic1 FC1 is VOR2 [Vp-p] FC1 = 20 LOG VOR1 [Vp-p] (dB) 4. In the same way, calculate FC1 in response to inputs in Pin4 and Pin6 only. 5. The difference between of each channel Freq.characteristic is as FC1. 6. Then set SW13 to OPEN, measure FC2 and FC2 in response to inputs in Pin10,12 and 14 only. Freq.characteristic 3,4 Measure the FC3, FC4 when SG5 of input signal. (For reference)
MITSUBISHI
6
15
MITSUBISHI ICs
M61323SP/FP
WIDE FREQUENCY BAND ANALOG SWITCH
Crosstalk between two inputs 1,2 1. The conditions is as table. This measurement shall use active probe. 2. Set SW13 to GND, input SG3 to Pin2 only. Read the output amplitude of TP31. The value is as VOR3. 3. Then set SW13 to OPEN, read the output amplitude of TP31. The value is as VOR3'. 4. Crosstalk between two inputs 1 C.T.I.1 is C.T.I.1= 20 LOG VOR3' [Vp-p] VOR3 [Vp-p] (dB)
5. In the same way, calculate C.T.I.1 in response to inputs in Pin4 and Pin6 only. 6. Then set SW13 to OPEN, input SG2 to Pin10 only. Read the output amplitude of TP31. The value is as VOR4. 7. Set SW13 to GND, read the output amplitude of TP31. The value is as VOR4'. 8. Crosstalk between two inputs 1 C.T.I.2 is C.T.I.2= 20 LOG VOR4'[Vp-p] VOR4[Vp-p] (dB)
9. In the same way, calculate C.T.I.2 in response to inputs in Pin12 and Pin14 only. Crosstalk between two inputs 3,4 Set SG4 as the input signal, and then the same method astable, measure C.T.I.3, C.T.I.4. Crosstalk between channels 1,2 1. The conditions is as table. This measurement shall use active probe. 2. Set SW13 to GND, input SG3 (0.7Vp-p) to Pin2 only. Read the output amplitude of TP31. The value is as VOR5. 3. Next, measure TP28, TP25 in the same state, and the amplitude is as VOG5, VOB5. 4. Crosstalk between channels1 C.T.C1 is C.T.C1= 20 LOG VOG5 or VOB5 VOR5 (dB)
5. In the same way, calculate C.T.C.1 in response to inputs in Pin4 and Pin6 only. 6. Then set SW13 to OPEN, input SG3(0.7Vp-p) to Pin10 only. Read the output amplitude of TP31. The value is as VOR6. 7. Next, measure TP28, TP25 in the same state, and the amplitude is as VOG6, VOB6. 8. Crosstalk between two inputs 1 C.T.C.2 is C.T.C2= 20 LOG VOG6 or VOB6 VOR6 (dB)
9. In the same way, calculate C.T.C.2 in response to inputs in Pin9 and Pin11 only. Crosstalk between channels 3,4 Set SG4 as the input signal, and then the same method astable, measure C.T.C3, C.T.C4. Pulse characteristic 1,2 1. The conditions is as table. (SG5 amplitude 0.7Vp-p) Set SW13 to GND (or OPEN). 2. Measure rising Tri and falling Tfi for 10%~90% of the input pulse with active probe. 3. Next, measure rising Tro and falling Tfo for 10%~90% of the output pulse with active probe. 4. Pulse characteristic Tr1, Tf1(Tr2, Tf2) is
100% 90% 2 2
Tr1(Tr2) = Tf1(Tf2) =
(Tro) (Tfo)
-
(Tri) (Tfi)
(nsec)
0% Tr Tf
10%
2
2
(nsec)
MITSUBISHI
7
15
MITSUBISHI ICs
M61323SP/FP
WIDE FREQUENCY BAND ANALOG SWITCH
Hi level output voltage 1,2 / Lo level output voltage 1,2 1. The conditions is as table. Input SG8 to Pin7 (or Pin8 ). Set SW13 to GND, read the output High level and low voltage of TP19, TP18. The value is as Vdch1, Vdcl1. 2. Input SG8 to Pin15 (or Pin16 ). Set SW13 to OPEN, read the output High level and low voltage of TP19, TP18. The value is as Vdch2, Vdcl2. Input threshold voltage H / Input threshold voltage L 1. Set SW13 to GND (or OPEN). Gradually increasing the voltage of Pin7 (or Pin15 ) from 0V, measure the input voltage of Pin7 (or Pin15 ) when the TP19 voltage turned high level (3.8V or more). The value is as VithH. 2. Gradually decreasing the voltage of Pin7 (or Pin15 ) from 3V, measure the input voltage of Pin7 (or Pin15 ) when the TP19 voltage turned low level (0.5V or less). The value is as VithL. 3. In the same way, measure the input voltage of Pin8 (or Pin16 ) as VithH, VithL. 100% Rising time / Falling time 80% 1. The conditions is as table. This measurement shall use active probe. 2. Measure rising Tri and falling Tfi for 20%~80% of the 20% output pulse as Tr3, Tf3 (Tr4, Tf4 ) . 0% Rising delay time / Falling delay time Tr' Tf' Set SW13 to GND (or OPEN), input SG8 to Pin7 (or Pin15 ). Measure the rising delay time HVdr and the falling delay time HVdf. SG8 50% In the same way, measure HVdr and HVdf when input SG8 to Pin8 (or Pin16 ).
HVDr HVDf 50%
Waveform output Sync input minimum voltage Gradually decreasing the amplitude of SG7 in Pin22, measure the amplitude of SG7 when the Sync-Sep output signal turn off . The value is as SYrv. Sync output High level voltage / Sync output Low level voltage Input SG7 to Pin22, read the output High level and low voltage of TP21. The value is as SYVH, SYVL. Sync output rising time / Sync output falling time 100% 1. The conditions is as table. (SG7 amplitude 0.3Vp-p) 90% This measurement shall use active probe. 2. Measure rising Tri and falling Tfi for 10%~90% 10% of the input pulse as STr, STf . 0% Sync output rising delay time STr STf SG7 Sync output falling delay time Input SG7 to Pin22. Measure the rising delay time Sdr 50% and the falling delay time Sdf. SDr Waveform output SDf 50%
Channel select SW threshold 1,2 1. Gradually increasing the voltage of Pin13 from 0V, is selected. The value is as Vthch1. 2.Gradually decreasing the voltage of Pin13 from 5V, is selected. The value is as Vthch2. Power save SW threshold 1,2 1. Gradually increasing the voltage of Pin11 from 0V, mode . The value is as VthPL. 2.Gradually decreasing the voltage of Pin13 from 5V, mode . The value is as VthPH.
measure the maximum voltage of Pin13 when the channel 1 measure the minimum voltage of Pin13 when the channel 2
measure the maximum voltage of Pin11 when the Power save measure the minimum voltage of Pin11 when the Power save
MITSUBISHI
8
15
MITSUBISHI ICs
M61323SP/FP
WIDE FREQUENCY BAND ANALOG SWITCH INPUT SIGNAL SG1 Sine wave(f=60KHz, 0.7Vp-p(Amplitude variable)) 0.7Vp-p (variable) SG2 SG3 SG4 SG5 SG6 0.7Vpp Sine wave(f=1MHz, 0.7Vp-p(Amplitude variable)) Sine wave(f=10MHz, 0.7Vp-p(Amplitude variable)) Sine wave(f=100MHz, 0.7Vp-p(Amplitude variable)) Sine wave(f=250MHz, 0.7Vp-p(Amplitude variable)) DUTY 80% fH=60kHz 0.7Vp-p
SG7
Sync (fH=60KHz) Amplitude variable (Typ. =0.3Vp-p) 4.5us
SG8
TTL
5V 0V
DUTY=50% fH=60kHz
THERMAL DERATING CURVE
( SP )
1750 1603 1500 1750
( FP )
1500
1250
1250 1068 1000 750 640 500
1000 833 750
500
250 0 -25
250 0 0 25 50 75 85 100 125 150 -25 0 25 50 75 100 125 150
Ambient temperature Ta ( C )
Ambient temperature Ta ( C )
MITSUBISHI
9
15
MITSUBISHI ICs
M61323SP/FP
WIDE FREQUENCY BAND ANALOG SWITCH TEST CIRCUIT ( M61323SP )
1u
0.01u
47u
A
a b
SW B
VccB 5V
MITSUBISHI
10
15
MITSUBISHI ICs
M61323SP/FP
WIDE FREQUENCY BAND ANALOG SWITCH
APPLICATION EXAMPLE ( M61323SP )
MITSUBISHI
11
15
MITSUBISHI ICs
M61323SP/FP
WIDE FREQUENCY BAND ANALOG SWITCH
DESCRIPTION OF PIN ( M61323SP )
Pin No. 1 3 5 20 26 29 32
DC
Description Vcc(R) Vcc(G) Vcc(B) Vcc(H,V,Sync-Sep.) Vcc(ROUT) Vcc(GOUT) Vcc(BOUT)
Voltage[V]
Peripheral circuits at pins
Notes
5.0
5.0
2 4 6 10 12 14
Input1(R) Input1(G) Input1(B) Input2(R) Input2(G) Input2(B)
3V
643
2.3
Input signal with low impedance.
2.2mA
500
7 8 15 16
Input1(H) Input1(V) Input2(H) Input2(V)
Input pulse between 3V and 5V.
7K 3 to 5V
SW
0 to 0.8V
9 17 24 27 30
GND(V-SW) GND (H,V,Sync-Sep.) GND(B-out) GND(G-out) GND(R-out)
GND
MITSUBISHI
12
15
MITSUBISHI ICs
M61323SP/FP
WIDE FREQUENCY BAND ANALOG SWITCH
DISCRIPTION OF PIN ( M61323SP cont.)
Pin No.
DC
Description
Voltage[V]
Peripheral circuits at pins
Notes
2.0V
11
PwrSave-SW
2.5
Do not apply more 5V DC voltage.
13
CONT-SW
2.4
2.4V
Do not apply more 5V DC voltage.
18 19
Vout Hout
MITSUBISHI
13
15
MITSUBISHI ICs
M61323SP/FP
WIDE FREQUENCY BAND ANALOG SWITCH DISCRIPTION OF PIN ( M61323SP cont.)
Pin No.
DC
Description
Voltage[V]
Peripheral circuits at pins
Notes
21
Sync sep OUT
10K
10K
Connect a capacitance between the pin and GND
2K
22
Sync sep IN
CLUMPref
when not use SYNC-SEP.
Vth
23
G Buffer OUT
2K
32,29,26PIN
25 28 31
Video OUT (B) Video OUT (G) Video OUT (R)
50
1.5
31,28,25PIN
30,27,24PIN
MITSUBISHI
14
15
MITSUBISHI ICs
M61323SP/FP
WIDE FREQUENCY BAND ANALOG SWITCH
NOTE HOW TO USE THIS IC ( M61323SP )
1. R,G,B input signal is 0.7Vp-p of standard video signal. 2. H,V input is 5.0V TTL type. 3. Input signal with sufficient low impedance to input terminal.
R 5V I<5mA 50
4. The terminal of R,G,B output pin are shown as Fig.1. When resistance is connected between the pin31(28,25) and GND, Icc will be increase. 5. Switch(Pin13) can be changed by supplying some voltage as Fig.2. 0 to 0.5V:INPUT1 2.5 to 5V:INPUT2 Do not apply Vcc or more DC voltage. 6. Power save mode is provided for saving Icc less than about 10mA as Fig.3. 0 to 0.5V:Power save mode (H.V-SW,Sync-Sep.,G-Buffer) 2.5 to 5V:Normal mode Do not apply 5V or more DC voltage. 7. When not use the Sync-separation circuit built in this IC, capacitance of several tens of pF is required between the pin22 and GND. Fig.1
13
Fig.2
11
Fig.3
CAUTIONS FOR MANUFACTURING BOARDS Built-in wide band preamplifier may cause oscillation due to the wiring shape on the board. Be careful for the following points. Vcc shall use a stable power supply. (Individual Vcc should use an independent power supply.) GND should be as wide as possible. Basically,solid earth should be used. Make the load capacitance of output pins as small as possible. Also ground the hold capacitance to stable GND ,wicth is as near to the pin as possible. Insertion of a resistance of several tens of ohms between the output pin and the circuit at the next stage makes oscillation harder. When inserting an output pull-down resistance, make wire between the output pin and the resistance as short as possible.
MITSUBISHI
15
15
This datasheet has been download from: www..com Datasheets for electronics components.


▲Up To Search▲   

 
Price & Availability of M61323FP

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X